ECE 222L
Lab 6 – Further Explorations with MATLAB
In this lab we will continue to explore the capabilities of MATLAB. We will be looking at three areas: 1) symbolic processing of algebraic expressions, differential equations and Laplace transforms, 2) creating an LTI object to represent a system and 3) an introduction to Simulink modeling.

In each section, there is first a description of the commands, followed by some examples that you should try on your own but don’t turn in, then finally a problem which you will turn in. Don’t turn in this whole handout; put the problems in a separate file.
Part I. Symbolic Processing.

Previously we have performed numerical calculations with MATLAB. We will now explore how to represent and manipulate functions in symbolic, or variable form. The first step is to create symbolic objects, i.e. to define the variable (t, s, x, etc.) as a symbol. There is a long way and a short way:

x = sym(‘x’) or syms x
The short way is not only shorter but can create multiple symbols at once:

syms x, y, z

There are many operations in the Symbolic Toolbox that are used to manipulate symbolic functions. Here are some useful ones; you can explore others on your own by typing help symbolic. For more information on any of the commands - syntax, options, examples - type help command.
For all of these, the expression F can either be defined first or within the command itself. For example,
F = (x – 2)^2

collect(F)

or

collect((x – 2)^2)

will do the same thing.
collect(F), expand(F) – reduces or expands an expression F by collecting together or multiplying out terms

factor(F) – finds factors of a polynomial

pretty(F), simple(F), simplify(F) – used to display an expression in its clearest form. pretty displays the expression in a form that resembles typing, simple finds the form with the least characters, and shows the steps to get there, and simplify uses Maple’s simplification rules.
poly2sym(p), sym2poly(F) – converts from a coefficient vector p to a polynomial, and vice-versa
Probably the three most common operations we perform are to plot a function, solve an equation (or set of equations) and evaluate a function. The commands for these are:
ezplot(F) – plots the one-variable expression F. Format commands that we use in numerical plotting such as axis, xlabel, ylabel, etc. can be used in exactly the same way

solve(‘eqn’) or solve(‘eqn1’, ‘eqn2’) - solves a single algebraic or transcendental equation eqn or simultaneous equations eqn1, eqn2. For this command, the equations are defined as a string, e.g. ‘x^2 – 2 = 0’.

For simultaneous equations, you can get the output in one step by defining a vector output:

[x,y] = solve(‘eqn1’,’eqn2’)

Otherwise, you need to type ans.x and ans.y to see the output.

subs(F,symbol,number) – replaces the symbol in the expression F with the number, and evaluates the expression at that number
Finding derivatives and integrals is also straightforward:

diff(F), int(F)

Some useful options:

diff(F,n) - finds the nth derivative

diff(F,x) – partial derivative with respect to variable x

int(F,a,b) – integral with limits a, b, where a, b can be numbers or symbols

Some other functions you may want to explore: taylor, symsum, limit
Symbolic MATLAB is useful for setting up and solving differential equations. The letter D can also be used (as well as diff) to represent the first derivative, D2 the second, and so on. Dt represents the first derivative with respect to t (x is the default.) The command to solve the differential equation is dsolve(‘eqn’). Arbitrary constants in the solution are given by C1, C2, etc., or initial conditions can be included in the dsolve command. You can also use dsolve for simultaneous differential equations. See help dsolve for more information – the syntax on this one is a bit tricky!
Finally, we can find Laplace transforms and inverse Laplace transforms with the commands laplace(F) and ilaplace(F).
Here are some examples to try. You do not need to turn these in.

1. Let F1 = x3 – 15x2 + 75x – 125 and F2 = (x + 5)2 – 20x. Explore the various commands, e.g.:

find F1 * F2 and F1/F2 and express in simplest form

evaluate F1 + F2 at x = 7.1

solve F1 = 0

form the coefficient vector p1

plot F1 and F2 on one plot (you can use hold on to keep the plot open)
2. Let F = sinh(3x)cosh(5x), find the derivative dF/dx and evaluate at x = 0.2.
 Let G = 5cos(2x)ln(4y), find the second derivative of G with respect to y.
(Remember log is ln!)

 Let H = xsin(3x), find the integral of H
3. Solve the simultaneous equations E1 = 6x +2y = 14 and E2 = (x – 1)2 + 5y = 6
4. Find the Laplace transforms of 1 – e-at and cos(bt). Take the inverse transforms of your answers.

Lab problem 1. This problem you turn in. Include your commands (either print the screen or save in an m.file) and your results (numbers or plots.) Add comments to your commands to explain what you are doing.
[image: image7.png]R1

UR

R2

Vo

The figure above shows a robot arm with two motor joints. The lengths are L1 = 4’ and L2 = 3’ (keep the units in feet.) The variables are the joint angles 1 and 2. The equations for the x, y coordinates of the hand are:
x = L1cos1 + L2cos(1 + 2)

y = L1sin1 + L2sin(1 + 2)

a) Find 1 and 2 to position the hand at x = 6’ and y = 2’. Give the answer in degrees. You should get two solutions (elbow up or elbow down.)

b) We now want to keep x fixed at 6’ and move the hand in a horizontal line. Obtain symbolic solutions for 1 and 2 as functions of y, then evaluate and plot them for y = 0.1 to 3.6’. Use subplot to put the two plots on one page. Remember the angles should be in degrees. Check the point y = 2’ to verify your plot agrees with part a).
Part II. System Representation.

A circuit with no initial conditions is an example of an LTI (linear time-invariant) system. We’ve talked about what linearity means in class. Time-invariance means that if the system input has a time delay, the system output will have the same time delay but is otherwise not affected. I.e., if input x(t) has output y(t), then input x(t – t0) has output y(t – t0).

A transfer function is a way to represent an LTI system. We will discuss transfer functions (section 13.5) in class, but it is possible when you read this that we haven’t gotten there yet. Simply, a transfer function is the output/input, all in Laplace form. The usual notation is H(s) = Y(s)/X(s), where output Y and input X could be voltages or currents. This applies to any circuit with a single independent source as the input and no initial conditions. An example is an op amp circuit, where we find Vo(s)/Vi(s). It’s a way to look at what the circuit is doing, independent of any particular input.
When we find the transfer function in MATLAB, we create an LTI object. We can then easily analyze properties of the system such as frequency response and time behavior. The command to create an LTI object in transfer function form is tf. The syntax is:

sys = tf([num],[den])

where [num] and [den] are the numerator and denominator polynomials represented as coefficient vectors. There is also a state-space form, but we will not go into that in this lab.

Some of the commands we will use to analyze the system are:

impulse(sys) – response of system to a unit impulse input (natural response)

step(sys) – response of system to a unit step input

bode(sys) – plots the magnitude (in dB) and phase of the transfer function versus log frequency, called a Bode plot. The command bodemag(sys) plots magnitude only.
pzmap(sys) – plots the poles and zeros of the transfer function in the complex plane

Example (try this but don’t turn it in)
Given a transfer function is H(s) =
[image: image2.wmf]4

s

3

s

1

s

2

+

+

-

, create an LTI object using
sys = tf([1 -1],[1 3 4]).
Plot the frequency response (bode), impulse response, step response and pole-zero map.
Lab problem 2. This problem you turn in. Turn in your calculations, commands and plots.
a) A series RLC circuit has an input voltage source vi, and the output is taken as the voltage across the resistor, vR. Find the transfer function H(s) = VR(s)/Vi(s).

b) If the input is ac, s =j only. Show that |H(j)| =
[image: image3.wmf].

)

(

)

(

2

L

R

2

2

LC

1

L

R

w

+

w

-

w

Hint: remember
[image: image4.wmf]2

2

}

z

Im{

}

z

Re{

|

z

|

+

=

Let C = 10 F and L = 5 mH. For R = 10, 100 and 1000 , use ezplot to plot |H| vs  for  from 100 to 100 krad/s. Use hold on to put the plots for the three resistor values on one graph.
c) Now create the same plot from H(s) using tf and bodemag. You should find this a much shorter way to do the same thing! (If you want, change the units of H in b) to dB, and change the x-axis of the ezplot to log scale in the graphics window.)
 (problem continues →)
d) Make plots of the impulse and step response. For the step response you can put the three R values on one plot, but for the impulse you will probably want to look at them separately. Use your judgment as to what best displays the information. Describe what you see in the frequency domain and time domain as R increases.
e) In the time domain, the differential equation for vR is:
[image: image5.wmf]dt

dv

L

R

v

LC

1

dt

dv

L

R

2

dt

v

d

i

R

R

R

2

=

+

+

. You don’t have to derive this, but you should be able to satisfy yourself that it is true.

Use dsolve to find the natural response of vR(t) if vi(t) = 0. Use initial conditions v(0) = 1 and dv/dt(0) = 0. Compare to the result using the second-order circuit formulas from chapter 8.

Part III. Simulink.

Simulink is a graphical interface that allows you to model dynamic systems using block diagrams. If you’ve never used it before, I recommend you go to www.mathworks.com, Academia, Interactive Tutorials, and watch the introductory tutorial for a while until you feel ready to get started. Refer back to the tutorial or the documentation as needed.

Type simulink in the MATLAB command window to start. Open a new model (either the blank paper icon or use the File - New menu.) Take a few minutes to explore through the libraries of blocks to get an idea of what is available. We will not attempt to discuss all the many options in this lab; we will just work through a couple of simple examples to give you a feel for the program.
Example 1. (Don’t turn these examples in.) Let’s model the RLC circuit from the last problem with R = 10 . In the Continuous library, find the Transfer function block and drag it into your model. Double-click to open it and set the transfer function by entering the numerator and denominator coefficient vectors. For an input, go to the Sources library and select the step input. To observe the output, go to the Sinks library and put the scope in your model so we can visually see the output. Connect the blocks together.
This is a fast system, so we want to adjust the step and simulation times. Double-click on the step and change the time it turns on from 1 to 0.01, and set the simulation time to 0.02 (in the simulation menu or there is a box on the toolbar.) There’s nothing critical about these numbers – just a better scale for this example. Now run the simulation by clicking the arrow on the toolbar and double-click on the scope to view the results. You can zoom in to observe the response better.

It’s nice to view the input and output simultaneously. From the Signal Routing library, put a MUX in your model in front of the scope. Change the output of the transfer function block to go to the MUX first and then to the scope. Connect the other MUX input to the line from the step to the transfer function. Run it again to observe.
Another useful output option to try is simout, which sends the output results to the MATLAB workspace for further analysis or plotting. Replace the scope with the simout block, and set the output format to array. After running the simulation, go back to the MATLAB command window and type simout.
Try the simulation with the other R values if you like, other input sources, or any other variations you want to try.
Example 2. The transfer function of the integrator shown in (i) below is H(s) = 1/sRC. We could put this in the transfer function block or we can model it as an integrator block (1/s) combined with a gain block. Both of these are in the Commonly Used Blocks library. Connect the integrator with a gain of 10 (i.e., 1/RC = 10) with a sine wave input, and connect both the input and output through a MUX to the scope as before. Run the simulation, adjusting the input frequency, amplitude and the simulation time as needed to create a nice signal on the scope, and observe that it is performing integration.
[image: image1.emf][image: image6.png]U1

Vo

 (i)

 (ii)
If you use the integrator block, you can model the effect of the power supply limits in an op amp. Try the simulation with the integrator limits set to ±12. Try this with a step or ramp input to really see the difference!
Lab problem 3. This problem you turn in. Turn in your calculations, model schematic and results (where we say “plot,” it means paste the scope screen in the report.)
a) Write the transfer function H(s) = Vo(s)/Vi(s) for the op amp circuit in (ii) above.

Use R1 = 1 k, R2 = 10 k and C = 50 F.
b) Model the transfer function in Simulink with a sine wave input and scope output, displaying both the input and output on the scope. Plot with input frequencies of 1, 10 and 100 rad/sec, adjusting the simulation time so that you see 5 – 10 cycles in each case. Why does the amplitude change with frequency?

c) Replace the input with a unit step. What is the output function in the time domain?
This is a very quick introduction to Simulink. I hope you will see that it is a useful tool, and that you have the opportunity to explore it more and to use it again in future classes.

� This problem was shamelessly stolen from “Introduction to MATLAB 6 for Engineers” by W. Palm

_1422796311.unknown

_1422796558.unknown

_1422797448.unknown

_1422795484.unknown

